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Abstract 

The focal adhesion protein vinculin is important for transmitting mechanical forces and orchestrating mechanical 

signaling events. De-regulation of vinculin results in altered cell adhesion, contractility, motility, and growth, all of 

which are important processes in cancer metastasis. This review summarizes recent reports on the role of vinculin 

in cellular force generation and signaling, and discusses implications of vinculin’s function for promoting cancer cell 

migration in 3D environments. 
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Introduction 

The mechanical integration of cells in tissues through contacts with the extracellular matrix (ECM) and 

neighboring cells is essential for tissue development. Cell adhesion is the result of complex and highly 

coordinated interactions of many proteins. Among them, the transmembrane cell adhesion receptors of 

the integrin family are the best studied. Integrins cluster in focal adhesions, where they recruit 

cytoplasmic focal adhesion proteins that connect the cytoplasmic tails of integrins to F-actin. These 

connections enable the bidirectional transmission of mechanical forces between the cytoskeleton and 

the ECM (Alonso et al. , 2002, Hynes, 2002). In addition, focal adhesion proteins modulate intracellular 

signaling pathways upon integrin ligation to the ECM, which controls diverse cellular processes such as 

proliferation, differentiation, apoptosis, or motility (Critchley, 2000). The majority of these processes are 

de-regulated in tumor cells, and it is therefore reasonable to ask to which degree adhesion proteins are 

implicated in the course of the disease.  

Vinculin is an abundant, prominent, and well-characterized F-actin binding protein localized in focal 

adhesions as well as in cell-adherence junctions (AJ).  Vinculin provides a mechanical link (Ezzell et al., 

1997, Grashoff et al. , 2010, Hu et al. , 2007, Li et al. , 2012), controls cell signaling processes (Chen et al. 

, 2002, Peng et al. , 2011, Subauste et al. , 2004a, Subauste et al. , 2004b), affects contractility (Mierke et 

al. , 2008b), and adhesion protein turnover (Humphries et al. , 2007, Möhl et al. , 2009). Vinculin has 

been suggested to function as a tumor suppressor by supporting anchorage-dependent cell growth 

(Rodriguez Fernandez et al. , 1993, Rodriguez Fernandez et al. , 1992b) and by suppressing tumor 

metastasis through reducing cell motility (Liu et al. , 2007, Rodriguez Fernandez et al. , 1992a, Rodriguez 

Fernandez et al., 1992b). Recent reports, however, have demonstrated that the role of vinculin in 

regulating cell migration is more complex and fundamentally differs between 2D and 3D environments 

(Mierke et al. , 2010).  

 

Vinculin’s interaction with proteins and lipids 

Vinculin simultaneously binds F-actin and the focal adhesion (FA) protein talin and α-actinin, which in 

turn connect to ECM-bound integrins (Giannone et al. , 2003, Goldmann, 2002, 2012, Jiang et al. , 2003, 

Margadant et al. , 2011). Structurally, vinculin is located in a layer between actin and talin within focal 

adhesions (Kanchanawong et al. , 2010). The connection between vinculin and partner molecules is 

mechanically strong and thus important for force transmission from the ECM to the actin cytoskeleton 

and vice versa (Ezzell et al. , 1997, Grashoff et al., 2010). Vinculin contains 1066 amino acids (MW 117 

kDa), which can be cleaved with protease V8 into a 95 kDa (residues 1–838) head and a 30 kDa (residues 

894–1066) tail fragment (Johnson and Craig, 1994). It binds to various other FA and actin regulatory 

proteins including paxillin, tensin, zyxin, ezrin, p130Cas, Arp2/3, VASP, and also binds to itself through an 

intramolecular head-tail-interaction (Brabek et al. , 2005, Brindle et al. , 1996, Burridge and Mangeat, 

1984, Crawford et al. , 1992, DeMali et al. , 2002, Drenckhahn and Franz, 1986, Geiger and Ginsberg, 

1991, Geiger et al. , 1980, Goldmann et al. , 1996, Johnson et al. , 1998, Lo et al. , 1994, Reinhard et al. , 

1992, Svoboda et al. , 1999, Turner, 1998, Turner and Burridge, 1991, Volberg et al. , 1995). The role of 
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these interactions is poorly understood, but is likely to have a critical impact on cell signaling (Carisey 

and Ballestrem, 2011).    

The binding and activation of vinculin at adhesion sites is rather complex and currently still not fully 

understood. Unbound, cytoplasmatic vinculin shows a high affinity between the vinculin-head (Vh) and -

tail (Vt) domain, which renders the molecule in an auto-inhibited, closed conformation, such that 

numerous of its binding sites are masked (Bakolitsa et al. , 2004, Borgon et al. , 2004, Cohen et al. , 2005, 

Johnson and Craig, 1995, Ziegler et al. , 2006). Releasing this high affinity Vh-Vt interaction to open the 

molecule is thought to require the binding of vinculin to focal adhesion proteins (Bakolitsa et al. , 2004, 

Bois et al. , 2006, Ziegler et al. , 2006). In particular, talin and F-actin are required for vinculin activation,  

as was shown in a FRET assay (Chen et al. , 2006) (Fig. 1). This view is at the core of the so-called 

combinatorial model for vinculin activation. 

Vinculin also associates with membrane lipids (Diez  et al. , 2009, Diez et al. , 2008, Johnson et al. , 1998, 

Tempel et al. , 1995). Phospholipid-binding of vinculin is discussed as a potential mechanism for vinculin 

activation (Johnson et al. , 1998, Ziegler et al. , 2002). In the presence of acidic phospholipids, tyrosine 

phosphorylation of vinculin is increased (Ito et al. , 1982, Ito et al. , 1983, Niggli et al. , 1990), which in 

turn is believed to promote the opening and hence activation of the molecule (Moese et al. , 2007, 

Zhang et al. , 2004). However, the view that phospholipid-binding leads to vinculin activation has 

recently been challenged by a study that demonstrated that PIP2-binding enhances the dissociation of 

vinculin from focal adhesions (Chandrasekar et al. , 2005) (Fig. 1).   

Several studies have demonstrated that the phosphorylation of vinculin on residues Y100 and Y1065 by 

Src family kinases (SFKs) might be important for its activation (Moese et al. , 2007, Zhang et al. , 2004). 

Downregulation of Src-kinase or mutations of these residues that prevent phosphorylation caused 

marked cell mechanical alterations. Specifically, reduced phosphorylation at residue Y1065 was 

associated with increased exchange dynamics in nascent focal adhesions and reduced insertion of the 

vinculin C-terminal residues into lipid membranes, yielding a decrease in cell traction and force 

generation (Diez et al. , 2009, Möhl et al. , 2009). Hence, preventing vinculin phosphorylation had a 

similar effect as complete vinculin knockout (Fig. 1).   

It was subsequently suggested that vinculin might first be recruited to the lipid membrane to become 

activated. Upon binding to phosphatidylinositol(4,5)-biphosphate (PIP2) at the cell membrane, vinculin 

unfolds, exposing its talin binding sites that are critical for vinculin’s focal adhesion localization in cells.  

Phosphorylation at residues Y100/Y1065 may therefore increase the affinity of vinculin for other binding 

partners, but phosphorylation alone is not sufficient to cause a complete activation and opening of the 

molecule. It is therefore believed that, in addition to phosphorylation, intracellular forces that are 

coupled to vinculin through its connection with talin, actin, and α-actinin, may mechanically open and 

thereby fully activate the vinculin molecule (Golji et al. , 2012 , Shams et al. , 2012). In support of this 

view is the observation that phosphorylation of vinculin is required for a reinforcement of the talin-actin 

-and α-actinin-actin linkage in response to mechanical forces (Huang et al. , 2011). This would mean that 

vinculin can only be fully activated under a condition in which it is already bound, at least weakly, to 

talin, actin, or α-actinin (Bershadsky et al. , 2006, Chen et al. ,2006). Accordingly, vinculin 
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phosphorylation is only needed for the initial, weak binding of the molecule to its binding partners. It is 

possible that these bonds are catch-bonds that strengthen under mechanical load, and hence that the 

reinforcement process is in fact not an actively regulated but a passive mechanical process, but catch-

bond behavior of vinculin has been recently challenged by a molecular dynamics study (Hytönen and 

Vogel, 2008). 

 

Force-dependent vinculin activation and force transmission 

Vinculin may also be mechanically activated by tensile forces acting through F-actin and talin. Indeed, 

force-dependent recruitment of vinculin to focal adhesions has been reported in several studies 

(Galbraith et al. , 2002, Grashoff et al. , 2010). Mechanical stress acting across the vinculin molecule 

could separate the Vh from the Vt domain, which then exposes binding sites for other FA proteins (Chen 

et al. ,2006, Küpper et al. , 2010, Möhl et al. , 2009). Such a mechanical unfolding has been suggested to 

trigger integrin-dependent mechano-sensitive signal transduction pathways (Hoffman et al. , 2011), 

although this has never been shown directly.  

Integrin-dependent mechano-sensitive signal transduction gives adherent cells the ability to reinforce 

their integrin-FA-actin connection when (i) external forces are exerted (Choquet et al. , 1997), or when 

(ii) increased internal forces are applied (Deng et al. , 2004). This reinforcement process leads to locally 

increased concentrations of integrin (clustering), an increased accumulation of focal adhesion proteins 

(recruitment) as well as actin polymerization (Coussen et al. , 2002, Huveneers et al. , 2012, Nishizaka et 

al. , 2000). Reinforcement allows the cell to generate higher traction forces and to withstand greater 

external forces (Balaban et al. , 2001, Grashoff et al. , 2010, Hoffman et al. , 2011). 

Evidence that vinculin is particularly important in tissues exposed to high mechanical load comes from 

several in vivo models. For instance, vinculin is required for the normal development of the body wall 

musculature in Caenorhabditis elegans embryos (Barstead and Waterston, 1989). Vinculin-deficient 

mouse embryos show heart edemas as well as defects in neural tube closure and nerve growth, and die 

at mid-gestation (Xu et al. , 1998a). Cardiomyocyte-specific vinculin gene disruption in mice is lethal and 

associated with the disintegration of intercalated discs, cardiac arhythmias, and dilated cardiomyopathy 

(Zemljic-Harpf et al. , 2007). Even heterozygous inactivation of the vinculin gene predisposed mice for 

cardiomyopathy (Zemljic-Harpf et al. , 2004), and vinculin-deficient smooth muscle tissue showed 

diminished force generation (Saez et al. , 2004). 

Consistent with these in vivo data, cell culture studies of vinculin-deficient murine embryonic fibroblasts 

(MEF), F9 cells, and PC12 neuronal cells showed that vinculin is required for cell spreading, firm 

adhesion to various extracellular matrix proteins, and the stabilization of focal adhesions and 

lamellipodia (Goldmann et al. , 1995, Saunders et al. , 2006, Varnum-Finney and Reichardt, 1994, Xu et 

al. , 1998b). These observations can be explained by the mechano-coupling and stabilizing function of 

vinculin through direct interaction with talin and F-actin (Ezzell et al. , 1997, Goldmann and Ezzell, 1996, 

Goldmann et al. , 1998, Humphries et al. , 2007). Indeed, vinculin transmits forces of ~2pN per molecule 

(Grashoff et al., 2010). In line with this, vinculin-deficient MEFs show diminished traction force 
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generation and reduced cytoskeletal stiffness on two-dimensional cell culture substrates (Mierke et al. , 

2010). 

 

Vinculin and cell motility 

Impaired traction force generation, spreading, and ECM-adhesion of cells lacking vinculin is generally 

associated with increased cell motility in 2D (Coll et al. , 1995, Mierke et al. , 2008a, Rodriguez 

Fernandez et al. , 1993, Rodriguez Fernandez et al. , 1992b, Saunders et al. , 2006, Xu et al. , 1998b). In 

contrast, vinculin overexpression was shown to reduce cell motility in 2D (Rodriguez Fernandez et al. , 

1992b). These data suggest that a lack of vinculin, in addition to promoting cell growth and inhibiting 

anoikis, could also contribute to the malignancy of cancer cells by promoting their invasive behavior 

(Rodriguez Fernandez et al. , 1992b). Consistent with this, the re-expression of vinculin in malignant 

fibroblasts and epithelial cells with low levels of endogenous vinculin led to reduced primary tumor 

formation after subcutaneous injection into mice and strongly reduced metastatic spreading into lungs 

(Rodriguez Fernandez et al. ,1993). But it remains unclear whether the reduced metastatic capacity of 

these cells after vinculin restoration was primarily the result of reduced cell invasion, reduced 

proliferative capacity, or both. These possibilities are discussed in more detail below.  

 

Vinculin-dependent cell growth, apoptosis, and tumorigeneity 

Vinculin depletion was shown to promote anchorage-independent growth of BALBc/3T3 cells on soft 

agar colonies (Rodriguez Fernandez et al. , 1993). Moreover, restoration of vinculin expression in 

transformed fibroblasts and pancreatic adenocarcinoma cells with low endogenous vinculin levels 

suppressed both anchorage-independent growth in soft agar, and the tumorigenic ability of these cells 

upon injection into nude mice (Rodriguez Fernandez et al. , 1992b). Reduced apoptotic behavior of 

vinculin-deficient cells is a consequence of changes in the activity of focal adhesion kinase (FAK), paxillin, 

and extracellular signal-regulated kinase (ERK
1/2

) (Subauste et al. , 2004b). Vinculin has also been 

proposed to directly influence other key signaling proteins such as p130Cas and CrkII (Janoštiak et al. 

unpublished observation) (Xu et al. , 1998b). In addition, vinculin-deficient F9 embryonic carcinoma cells 

lack the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten) 

(Subauste et al. , 2004a). These data suggest that vinculin deficiency induces alterations in cell signaling 

in a direction that may increase the tumorigeneity of the cells (Table 1).  

 

Vinculin’s role in tumor cell invasion  

Cancer metastasis requires cells to invade connective tissue, which is inherently a mechanical event that 

involves adhesion, shape changes, movement, and force generation of cells (Friedl and Brocker, 2000, 

Rolli et al., 2003, Wolf et al., 2003, Paszek et al., 2005, Zaman et al., 2006, Brabek et al., 2010, Friedl and 

Wolf, 2010, Bradbury et al., 2012). Since the vinculin molecule connects the ECM through integrins and 

Page 5 of 15 Cell Biology International



For Review
 O

nly

 6 

talin to the actomyosin cytoskeleton and is therefore critical for the transmission of contractile forces, 

and since vinculin regulates cell motility on 2D substrates, it is conceivable that vinculin may also affect 

cell invasion. However, whether reduced cell adhesion and force generation in the absence of vinculin 

lead to an increased cell motility in 3D tissue environments similar to 2D substrates, or whether loss of 

vinculin inhibits 3D cell migration, has only recently been addressed (Mierke et al. , 2010). 

Cells on 2D surfaces experience only negligible frictional (drag) forces from the liquid environment but 

no steric hindrance, whilst cells in a 3D environment have to overcome the forces that arise from the 

steric hindrance of the matrix network (Zaman et al. , 2006, Zhong et al. , 2012). Cells have several 

options: they either deform themselves until they fit through the pores/gaps, or they change the 

network until the pores/gaps are large enough to pass through.  For the latter, cells can either use 

pushing and pulling forces, or they secrete cellular enzymes such as metalloproteinases (MMPs) (Sanz-

Moreno et al. , 2008, Friedl and  Wolf, 2003). Switching between cell body deforming versus matrix 

deforming migration strategies can be deduced from cell morphology changes between rounded versus 

elongated cell shapes. A cell body-deforming migration strategy is referred to as amoeboid migration, 

whereas a matrix-deforming migration strategy is referred to as mesenchymal migration. A review of 

these different migration strategies is given in (Friedl and Gilmour, 2009, Friedl and Wolf, 2003). 

To squeeze through small pores/gaps, the cell needs to generate sufficient forces to overcome the 

elastic and frictional resistance of the cytoskeleton and the nucleus. Here, cells have the option to 

decrease the cytoskeletal elasticity (stiffness) and friction by depolymerizing the cytoskeletal filaments; 

this reduces the forces that are necessary to deform the cell, but at the same time this strategy also 

reduces the force-generating capacity of the actomyosin contractile apparatus (Petrie et al. , 2012). The 

cellular changes after a loss of vinculin, i.e. reduced adhesion, increased focal adhesion turnover, 

reduced cell stiffness and contractile forces are all associated with an amoeboid migration strategy, but 

whether vinculin-deficient cells do indeed exhibit an amoeboid phenotype in 3D needs to be 

investigated. As reported above, the cellular changes induced by a loss of vinculin lead to an increased 

migration speed in 2D. It is, however, not obvious how these changes affect migration through a dense 

3D environment with a high degree of steric hindrance. If the pores of the 3D matrix fall below a cell-

specific minimum size through which the cell can conveniently squeeze, amoeboid-like migration 

becomes less effective and a mesenchymal migration strategy may need to be employed, including cell 

elongation, strong adhesion, and large contractile force generation, all of which require vinculin.  

Indeed, wildtype MEFs invade deeper and with higher motility into dense and relatively stiff 3-D 

collagen gels compared to vinculin-deficient cells (Mierke et al. , 2010), suggesting that vinculin may be 

an important promoter of tumor cell invasiveness in dense environments with a high degree of steric 

hindrance.  We speculate that vinculin, beyond increasing adhesiveness and force generation, also 

promotes cell polarization and directionality of traction force generation. These mesenchymal attributes 

have recently been shown to be a prerequisite for the migration of tumor cells through dense 3-D 

matrices (Koch et al. , 2012).  

This raises the question whether vinculin also promotes the 3-D migration of tumor cells in vivo. The 

reduced metastatic capacity of vinculin-expressing cells as reported in several studies (Lifschitz-Mercer 

et al. , 1997, Rodriguez Fernandez et al. , 1992a, 1993, Rodriguez Fernandez et al. , 1992b) seems to 
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contradict data from in vitro 3-D migration assays but may be explained by a reduced cell proliferation. 

Studies that specify between vinculin functions in cell migration and regulation of cell growth at the 

tissue level or in vivo will likely yield new insight into the mechanism underlying vinculin’s function as 

tumor suppressor. 

 

Future directions 

A recent study reported the presence of mechanical tension across vinculin in cells (Grashoff et al. , 

2010). These authors suggested a regulatory mechanism by which FA stabilization requires both the 

recruitment and force transmission of vinculin. However, major questions still remain unanswered: (i) is 

vinculin only a mechano-coupler or also a mechano-sensor, and (ii) to what degree is vinculin, beyond its 

mechanical function, involved in signaling processes that enable the cell to react to its physical 

environment?  

Moreover, it is still an open question how vinculin is activated in cells, whether (i) by phosphorylation 

through PIP2 or Src-kinase on residue Y1065/Y100, (ii) through binding to talin/alpha-actinin to vinculin`s 

head and its binding to actin, (iii) through the binding of vinculin`s tail to the cell membrane, (iv) through 

internal/external forces, or (v) by the combination of many parameters. Vinculin activation, in turn, 

triggers a cascade of downstream events via proteins such as paxillin, FAK, ERK, MLCK, but the precise 

pathway and the dynamics of these events are still debated. 

An intriguing question is whether vinculin’s effect on traction force generation (Mierke et al. , 2008a, 

Mierke et al. , 2010) is primarily a result of physically linking the actin cytoskeleton and ECM, or whether 

vinculin also actively controls actomyosin-based force generation in the cell. Interestingly, it was 

recently demonstrated that vinculin is required for myosin light chain recruitment to cell-adherence 

junctions (AJ) under increased mechanical load (le Duc et al. , 2010, Leckband et al. , 2011, Twiss et al. , 

2012). Whether similar vinculin-dependent signaling processes contribute to the generation of high 

ECM-traction forces (Mierke et al. , 2010) remains to be determined. 

There is supporting evidence that vinculin fundamentally influences many important cell function, in 

particular mechanical properties such as contractility, adhesion strength, and stiffness. These 

mechanical properties affect the ability of cells to migrate, but this depends on the dimensionality, 

adhesiveness, or steric hindrance of the environment.  Therefore, vinculin can be expected to have a 

crucial effect on the ability of tumor cells to invade tissue and hence to metastasize.  We envision that 

vinculin, similar to numerous other focal adhesion and adherence junction (AJ) molecules that have 

been implicated in cancer development and metastasis, such as integrins, talin, p130Cas, or cadherins, 

will keep scientists busy for years to come, addressing not only single cell behavior but also cell 

populations in complex 3-D environments. 
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Table 1: Influence of vinculin on tumorigeneity 

Effects of vinculin 

 

Expected effects on 

      tumorigeneity  

References 

Conferring anchorage- 

dependent cell growth 

      decreased (Liu et al., 2007, Rodriguez 

Fernandez et al., 1992a, 1993, 

Rodriguez Fernandez et al.,  

1992b, Volberg et al., 1995) 

Increased apoptosis, anoikis       increased (Critchley, 2004, Ziegler et al., 

2006) 

Reduced 2D migration       decreased (Coll et al., 1995, Mierke et al., 

2010, Rodriguez Fernandez et 

al., 1992a, Xu et al., 1998b)  

PTEN upregulation       decreased (Subauste et al.,  2004a) 

Higher cell stiffness       decreased (Mierke et al.,  2008a, 2010) 

Higher 3-D motility       increased (Mierke et al., 2010) 

Higher contractility       increased (Kraning-Rush et al. , 2012, 

Mierke et al., 2008a,  2010) 

ERK1/2/MAPK activation 

 

      decreased 

 

(Goldmann, 2002, Ziegler et al., 

2006)  
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Fig. 1  Possible ways of vinculin activation: Vinculin interaction by phosphorylation and protein binding 

(left), or by lipid binding (right), leads to a primed or active state (middle) that may be further activated 

or stabilized by forces acting across vinculin. The vinculin molecule can either be primed by Src 

phosphorylation on position Y100 and/or Y1065 before binding to talin and F-actin, or talin/alpha-

actinin bind to vinculin to trigger the unmasking of the molecule, which then allows for F-actin binding 

and phosphorylation. Alternatively, binding of talin to the vinculin-head together with phospholipid 

membrane binding to the vinculin–tail facilitates F-actin association. The coupling of vinculin to F-actin 

then enables the transmission of intracellular or extracellular forces and integrin-mediated mechano-

chemical signaling. Detailed information can be found in (Cohen, et al., 2005, Cohen et al. , 2006, Dey et 

al., 2011, Diez et al., 2009, Kanchanawong et al.,  2010, Moese et al., 2007, Subauste et al., 2004b, Zhang 

et al., 2004, Ziegler et al., 2006). 
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